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Abstract: - Bezier parametric patches are used in engineering practice quite often, especially in CAD/CAM 
systems oriented to mechanical design. In many cases quadrilateral meshes are used for tessellation of 
parameters domain. We propose a new modification of the Bezier cubic rectangular patch, the BS-patch, which 
is based on the requirement that diagonal curves must be of degree 3 instead of degree 6 as it is in the case of 
the Bezier patch. Theoretical derivation of conditions is presented and some experimental results as well. The 
BS-Patch is convenient for applications where for different tessellation of the 𝑢 − 𝑣 domain different degrees 
of diagonal curves are not acceptable.  
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1 Introduction 
Cubic parametric curves and surfaces are very often 
used for data interpolation or approximation. In the 
vast majority rectangular patches are used in 
engineering practice as they seem to be simple, easy 
to handle, compute and render (display).  For 
rendering a rectangular patch is tessellated to 
triangles.  

In this paper we describe a new cubic Bezier 
patch modification, called Bezier Smart-Patch (BS-
patch). It is based on a Bezier cubic patch on which 
some additional requirements are applied. This 
modification is motivated by engineering 
applications, in general. It is expected that the 
proposed BS-patch can applied in GIS systems and 
geography applications as well.  
 
 
2 Problem Formulation 
Parametric cubic curves and surfaces are described 
in many publications [1]-[7], [9], [10], [14]. There 
are many different formulas for cubic curves and 
patches, e.g. Bezier, Hermite, B-spline etc., but 
generally diagonal curves of a cubic rectangular 
patch is a curve of degree 6. The proposed BS-patch, 
derived from the Bezier form, has diagonal curves 
of degree 3, i.e. curves for 𝑣 = 𝑢  and 𝑣 = 1 − 𝑢, 
while the original Bezier patch diagonal curves are 
of degree 6. Therefore the proposed BS-patch 
surface is “independent” of tessellation of regular 
𝑢 − 𝑣  domain. It means that if any tessellation is 

used, all curves, i.e. boundary and diagonal curves 
are of degree 3. 

A cubic Bezier curve, see Fig.1, can be described 
in a matrix form as 

 

𝑝(𝑡) = 𝒑𝑇  𝑴𝐵 𝒕 

𝑴𝐵 = �

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

� 
(1) 

 
where: 𝒑 = [ 𝑝0, 𝑝1,𝑝2, 𝑝3]𝑇 is a vector of “control” 
values of a Bezier cubic curve, 𝒕 =  [𝑡3,  𝑡2, 𝑡, 1]𝑇, 
𝑡 ∈ 〈0, 1〉  is a parameter of the curve and 𝑴𝐵 is the 
Bezier matrix. 

 
Fig.1 Bezier curve definition 

 
A cubic Bezier patch, see Fig.2, is described in a 
matrix form for the 𝑥-coordinate as  

 𝑥(𝑢, 𝑣) = 𝒖𝑇 𝑴𝐵  
𝑇 𝑿 𝑴𝐵 𝒗 (2) 

where: 𝑿  is a matrix of “control” values of the 
Bezier cubic patch 

p4 p1   

p2 
p0 

X(u) 
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 𝑿 = �

𝑥00 𝑥01 𝑥02 𝑥03
𝑥10 𝑥11 𝑥12 𝑥13
𝑥20 𝑥21 𝑥22 𝑥23
𝑥30 𝑥31 𝑥32 𝑥33

� (3) 

𝒖, resp.  𝒗 , is a vector  𝒖 =  [𝑢3,  𝑢2, 𝑢, 1]𝑇, resp. 
𝒗 =  [𝑣3,  𝑣2, 𝑣, 1]𝑇 and 𝑢 ∈ 〈0, 1〉, resp. 𝑣 ∈ 〈0, 1〉 
is a parameters of the patch. 

Similarly for 𝑦 and 𝑧 coordinates: 

 
𝑦(𝑢, 𝑣) = 𝒖𝑇  𝑴𝐵  

𝑇 𝒀 𝑴𝐵 𝒗 

𝑧(𝑢, 𝑣) = 𝒖𝑇  𝑴𝐵  
𝑇 𝒁 𝑴𝐵 𝒗. 

(4) 

It means that a rectangular Bezier patch is given by 
a matrix 4 x 4 of control values for each coordinate, 
i.e. by 3 x 16 = 48 values in E3. 

From the definition of the Bezier patch it is clear, 
that boundary curves are cubic Bezier curves, i.e. 
curves of degree 3. 

There are many applications, where a rectangular 
mesh is used in the 𝑢 − 𝑣  domain. Sometimes  𝑥 , 
resp. 𝑦 values are taken as 𝑢, resp. 𝑣 parameters and 
only 𝑧  value is interpolated/approximated as 
 𝑦 = 𝑓(𝑥,𝑦). 

There are many reasons why patches, i.e. the 
𝑢 − 𝑣 domains, are tessellated to a triangular mesh, 
let us present just some of them: 
1. A plane in E3 is defined by three points, so the 

4th point is not generally on the plane (due to 
computer limited precision it is nearly always 

valid even theoretically the point lies on the 
plane).  

2. The given 𝑢 − 𝑣 rectangular domain mesh can 
be tessellated in different ways to a triangular 
mesh, in general, using different patterns, see 
fig.3. 

3. If a rectangular Bezier cubic patch us used, 
then the diagonal curves, i.e. 𝑣 = 𝑢  and 
𝑣 = 1 − 𝑢, are of degree 6. 

 

 
  

 

Fig.3 Different tessellation of 
  𝑢 − 𝑣 domain for the given corner points 

 

 
Fig.2 Control points of the Bezier patch 
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Especially last two points are very important as 
the final surface depends on tessellation and some 
curves might be of degree 6. This is not acceptable 
for some applications. There is a natural question: 

“Why some curves, i.e. when fixing 𝑢 = 𝑓(𝑣), 
are degree of 3 and some are degree of 6?” 

If this feature is not controlled carefully it could 
lead to critical, sometimes even fatal, situations. 

Understanding this, we exposed a specific 
restriction to the Bezier patch as curves for   𝑣 = 𝑢  
and 𝑣 = 1 − 𝑢  must be of degree 3 as the patch 
boundary curves. This requirement has resulted into 
new modification of the Bezier cubic patch, called 
Bezier Smart-patch (BS-patch), described below. It 
follows development of the HS-Patch: Hermite 
Smart cubic patch modification [11]-[13]. 
 
 
3 Proposed BS-patch 
Let us consider the Bezier patch on which we put 
some restrictions given by the requirement that 
diagonal curves, i.e. for  𝑣 = 𝑢  and = 1 − 𝑢 , are to 
be of degree 3. 

The Bezier patch is given in the matrix form as 

 𝑥(𝑢, 𝑣) = 𝒖𝑇 𝑴𝐵  
𝑇 𝑿 𝑴𝐵 𝒗 (5) 

 
The restrictions for the proposed S-patch are: 
• 𝑥(𝑢, 𝑣)  for 𝑣 = 𝑢  is a curve of degree 3, it 

means that 𝑥(𝑢) = 𝒖𝑇  𝑴𝐵  
𝑇 𝑿 𝑴𝐵 𝒖  is a curve 

of degree3. 
We can write (𝑢) = 𝒖𝑇  𝑹1 𝒖 ,  

where 𝑹1 =  𝑴𝑩  
𝑇 𝑿 𝑴𝐵 

• 𝑥(𝑢, 𝑣) for 𝑣 = 1 − 𝑢 is a curve of degree 3, it 
means that 𝑥(𝑢) = 𝒖𝑇  𝑴𝐵  

𝑇 𝑿 𝑴𝐵 𝑻 𝒖 is a curve 
of degree3,  
 
 
 

 

 

 

 

 

where:  

 

𝒗
= [(1 − 𝑢)3 (1 − 𝑢)2 1 − 𝑢 1]𝑇
= 

�
−𝑢3 + 3𝑢2 − 3𝑢 + 1

𝑢2 − 2𝑢 + 1
−𝑢 + 1

1

� = 

�

−1 3 −3 1
0 1 −2 1
0 0 −1 1
0 0 0 1

� �
𝑢3
𝑢2
𝑢
1

� = 𝑻 𝒖 

(6) 

We can write  

 𝑥(𝑢) = 𝒖𝑇 𝑹2 𝒖 (7) 

where 

 𝑹2 = 𝑴𝐵  
𝑇 𝑿 𝑴𝐵 𝑻 (8) 

The Bezier diagonal curve is in both cases defined 
as 

 

𝑥(𝑢) = � 𝑟𝑖𝑗 

4

𝑖,𝑗=1

𝑢4−𝑖  𝑢4−𝑗 

= 𝑟11𝑢6   + (𝑟12 + 𝑟21)𝑢5 
+(𝑟13 + 𝑟22 + 𝑟31)𝑢4 
+(𝑟14 + 𝑟23 + 𝑟32 + 𝑟41)𝑢3 
+(𝑟24 + 𝑟33 + 𝑟42)𝑢2 
+(𝑟34 + 𝑟43)𝑢 + 𝑟44  

(9) 

 𝑥(𝑢) =  �𝑎𝑘

6

𝑘=0

 𝑢𝑘 =  𝒂𝑇 𝒖 (10) 

 

where: 𝒖 = [𝑢6, 𝑢5, 𝑢4, 𝑢3, 𝑢2, 𝑢, 1]𝑇 

𝒂 = [𝑟11 , 𝑟12 + 𝑟21, 𝑟13 + 𝑟22 + 𝑟31, 
𝑟14 + 𝑟23 + 𝑟32 + 𝑟41, 𝑟24 + 𝑟33 + 𝑟42, 

 𝑟34 + 𝑟43,𝑟44 ]𝑇  

We have 16 equations giving the relations between 
𝑥𝑖𝑗 and 𝑟𝑖𝑗  for both cases, i.e. 𝑹1 and 𝑹2, that form 
a matrix relation, which expresses how the control 
values 𝑥𝑖𝑗 form the coefficients in the 𝑟𝑖𝑗 

 𝝆 = 𝛀 𝝃 (11) 

where:

 
𝝆 = [ 𝑟11,  𝑟12,  𝑟13,  𝑟14,  𝑟21,  𝑟22,  𝑟23,  𝑟24,  𝑟31,  𝑟32,  𝑟33,  𝑟34,  𝑟41,  𝑟42,  𝑟43,  𝑟44 ]𝑇  

 𝝃
= [ 𝑥00,  𝑥01,  𝑥02,  𝑥03,  𝑥10,  𝑥11,  𝑥12,  𝑥13,  𝑥20,  𝑥21,  𝑥22,  𝑥23,  𝑥30,  𝑥31,  𝑥32,  𝑥33 ]𝑇 

(12) 
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For the case 1, i.e. 𝑢 = 𝑣 we get 
  𝝃 =
[  𝑥00,     𝑥01,   𝑥02,   𝑥03,    𝑥10,    𝑥11,     𝑥12,    𝑥13,    𝑥20,    𝑥21,   𝑥22,    𝑥23,    𝑥30,   𝑥31,  𝑥32,  𝑥33 ]𝑇              (13) 

 

𝛀𝟏 = 

   

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 −3 3 −1 −3 9 −9 3 3 −9 9 −3 −1 3 −3 1
−3 6 −3 . 9 −18 9 . −9 18 −9 . 3 −6 3 .
3 −3 . . −9 9 . . 9 −9 . . −3 3 . .
−1 . . . 3 . . . −3 . . . 1 . . .
−3 9 −9 3 6 −18 18 −6 −3 9 −9 3 . . . .
9 −18 9 . −18 36 −18 . 9 −18 9 . . . . .
−9 9 . . 18 −18 . . −9 9 . . . . . .
3 . . . −6 . . . 3 . . . . . . .
3 −9 9 −3 −3 9 −9 3 . . . . . . . .
−9 18 −9 . 9 −18 9 . . . . . . . . .
9 −9 . . −9 9 . . . . . . . . . .
−3 . . . 3 . . . . . . . . . . .
−1 3 −3 1 . . . . . . . . . . . .
3 −6 3 . . . . . . . . . . . . .
−3 3 . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

          (14)  

It should be read as e.g. 𝑟42 = 3𝑥00 − 6𝑥01 + 3𝑥02 . Note that the notation used here is 𝛀𝟏 𝝃 = 𝒓 
For the case 2, i.e. 𝑣 = 1 − 𝑢 we get  

𝝃
= [  𝑥00,    𝑥01,   𝑥02,   𝑥03,    𝑥10,     𝑥11,       𝑥12,    𝑥13,    𝑥20,    𝑥21,   𝑥22,    𝑥23,    𝑥30,   𝑥31,  𝑥32,  𝑥3   (13) 

𝛀𝟐 = 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
−1 3 −3 1 3 −9 9 −3 −3 9 −9 3 1 −3 3 −1

. −3 6 −3 . 9 −18 9 . −9 18 −9 . 3 −6 3

. . −3 3 . . 9 −9 . . −9 9 . . 3 −3

. . . −1 . . . 3 . . . −3 . . . 1
3 −9 9 −3 −6 18 −18 6 3 −9 9 −3 . . . .
. 9 −18 9 . −18 36 −18 . 9 −18 9 . . . .
. . 9 −9 . . −18 18 . . 9 −9 . . . .
. . . 3 . . . −6 . . . 3 . . . .
−3 9 −9 3 3 −9 9 −3 . . . . . . . .

. −9 18 −9 . 9 −18 9 . . . . . . . .

. . −9 9 . . 9 −9 . . . . . . . .

. . . −3 . . . 3 . . . . . . . .
1 −3 3 −1 . . . . . . . . . . . .
. 3 −6 3 . . . . . . . . . . . .
. . 3 −3 . . . . . . . . . . . .
. . . 1 . . . . . . . . . . . . ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (14) 

 

We can write 

 𝑎𝑖 = �𝜆𝑖𝑗𝜉𝑗

16

𝑗=1

= 𝝀𝑖𝑇𝝃 (15) 

for = 1, … ,6.  
As we require the diagonal curves to be of degree 3, 
we can write conditions for that as: 
• in the case 1:    𝑟11 = 0;  𝑟12 + 𝑟21 = 0; 

 𝑟13 + 𝑟22 + 𝑟31 = 0  using the matrix 𝑹1 

• in the case 2:    𝑟11 = 0;  𝑟12 + 𝑟21 = 0; 
𝑟13 + 𝑟22 + 𝑟31 = 0  using the matrix 𝑹2 

From those conditions we get a system of linear 
equations 
 𝚲 𝛏 = 0 (16) 
where the first three rows of the matrix 𝚲 are taken 
for the case 1, i.e. related to the matrix  𝑹1, and last 
three rows are taken for the case 2, i.e. related to the 
matrix  𝑹2 .  
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𝝃 = [ 00,   𝑥 𝑥01,   𝑥02,     𝑥03,     𝑥10,     𝑥11,    𝑥12,   𝑥13,     𝑥20,     𝑥21,    𝑥22,      𝑥23,     𝑥30,    𝑥31,  𝑥32,   𝑥33 ]𝑇 (17) 
𝚲 = 

 

⎣
⎢
⎢
⎢
⎢
⎡

1 −3 3 −1 −3 9 −9 3 3 −9 9 −3 −1 3 −3 1
−6 15 −12 3 15 −36 27 −6 −12 27 −18 3 3 −6 3 0
15 −30 18 −3 −30 54 −27 3 18 −27 9 0 −3 3 0 0
−1 3 −3 1 3 −9 9 −3 −3 9 −9 3 1 −3 3 −1
3 −12 15 −6 −6 27 −36 15 3 −18 27 −12 0 3 −6 3
−3 18 −30 15 3 −27 54 −30 0 9 −27 18 0 0 3 −3⎦

⎥
⎥
⎥
⎥
⎤

 (18) 

 
The rank of the matrix 𝑟𝑎𝑛𝑘(𝚲) = 5, which means 
that we have to respect some restrictions generally 
imposed on the control points of the BS-patch. As 
the corner points are given by a user, the other 
control points are tied together with a relation. It can 
be seen that the vector 𝛏 is actually composed from 
values that are fixed (corner points are usually given) 
and by values, that can be considered as “free”, but  

have to fulfill some additional condition(s). Let us 
explore this condition more in detail, now. 

The equation 𝚲 𝛏 = 0 can be rewritten as corner 
points are given as follows. Let us define vectors 𝝃𝟏 
and 𝝃𝟐 as 

𝝃𝟏 = [ 𝑥00,  𝑥03,  𝑥30,  𝑥33 ]𝑇 

i.e. the corner points of the patch and  

𝝃𝟐 = [𝑥01,  𝑥02,  𝑥10,  𝑥11,  𝑥12,  𝑥13, 𝑥20,  𝑥21,  𝑥22,  𝑥23,  𝑥31,  𝑥32]𝑇 (19) 

i.e. other control points of the patch and matrices 𝚲1 and 𝚲2 

 

𝝃𝟏 = [  𝑥00,    𝑥03,   𝑥30,   𝑥33 ]𝑇   

𝚲1 =

⎣
⎢
⎢
⎢
⎢
⎡

1 −1 −1 1
−6 3 3 0
15 −3 −3 0
−1 1 1 −1
3 −6 0 3
−3 15 0 −3⎦

⎥
⎥
⎥
⎥
⎤

 (20) 

 

 

𝝃𝟐
= [   𝑥01,    𝑥02,       𝑥10,      𝑥11,       𝑥12,     𝑥13,     𝑥20,      𝑥21,       𝑥22,      𝑥23,   𝑥31,   𝑥32 ]𝑇 

𝚲2 =

⎣
⎢
⎢
⎢
⎢
⎡
−3 3 −3 9 −9 3 3 −9 9 −3 3 −3
15 −12 15 −36 27 −6 −12 27 −18 3 −6 3
−30 18 −30 54 −27 3 18 −27 9 0 3 0

3 −3 3 −9 9 −3 −3 9 −9 3 −3 3
−12 15 −6 27 −36 15 3 −18 27 −12 3 −6
18 −30 3 −27 54 −30 0 9 −27 18 0 3 ⎦

⎥
⎥
⎥
⎥
⎤

 
(21) 

It can be seen that we get  
 𝚲2𝛏2 = −𝚲1𝛏1 (22) 

that is equivalent to the equation 𝚲 𝛏 = 0. Rewriting and reducing the system of equations above, we get 

⎣
⎢
⎢
⎢
⎢
⎡
 𝑥01 𝑥02 𝑥10 𝑥20 𝑥11 𝑥12 𝑥21 𝑥22 𝑥13 𝑥23 𝑥31 𝑥32 

1 . . 2 . . −3 . . 1 2 .
. 1 . 1 . . . −3 . 2 . 2
. . 1 −2 . . 3 −3 −1 2 −3 3
. . . . 1 . . −2 −1 2 −1 2
. . . . −1 1 1 −1 . . . . ⎦

⎥
⎥
⎥
⎥
⎤

𝛏2 

=
1
9

⎣
⎢
⎢
⎢
⎢
⎡
𝑥00 𝑥03 𝑥30 𝑥33
6 3 12 6
3 6 6 12
3 −3 −12 12
2 −2 −2 11
−1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎤

𝛏1 

(23) 
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From this equation we can see that the inner control 
points of the Bezier patch must fulfill the following 
condition: 

 
𝑥11 − 𝑥12 − 𝑥21 − 𝑥22 = 

 
1
9

 [𝑥00 − 𝑥03 − 𝑥30 + 𝑥33] 
(24) 

2.1 Constrain Conditions in the Hermite 
form - HS-Patch 
Let us assume a Hermite bicubic patch, Fig.4. In [11] 
the following conditions for the Hermite form were 
derived the following conditions: 

 𝑥33 + 𝑥44 = 2𝜑    𝑥34 + 𝑥43 = 2𝜑 
𝜑 = 𝑥11 − 𝑥12 − 𝑥21 + 𝑥22 (25) 

where 𝜑 is given by the corner points of the bicubic 
patch. 

We can define two parameters 𝛼 and 𝛽 (actually 
barycentric coordinates) as follows: 

 2𝜑 𝛼 = 𝑥44 2𝜑 (1 − 𝛼) = 𝑥33 (26) 
and 
 2𝜑 𝛽 = 𝑥43 2𝜑 (1 − 𝛽) = 𝑥34 (27) 
It means that the twist vectors are determined by 𝛼 
and 𝛽 values and by the corner points. 

Now we have the following equations to be solved  
1st 
row 

𝑏 + 𝑥43 = 𝑏 + 2𝛽𝜑 = −𝜑  
𝑏 = 𝑥13 − 𝑥23 + 𝑥41 − 𝑥42 (28) 

 
2nd  
row 

𝑎 + 𝑥44 = 𝑎 + 2𝛼𝜑 = −𝜑 
𝑎 = 𝑥14 − 𝑥24 + 𝑥41 − 𝑥42 (29) 

3rd 
row 

𝑐 − 𝑥43 − 𝑥44 = 𝑐 − 2(𝛼 + 𝛽)𝜑
= −2𝜑 

𝑐 = 𝑥31 − 𝑥32 − 𝑥41 + 𝑥42 
(30) 

Then 
𝛽 = −

𝑏 + 𝜑
2𝜑    𝛼 = −

𝑎 + 𝜑
2𝜑  

 

(31) 
−2𝜑 = 𝑐 − 2𝜑𝛼 − 2𝜑𝛽 

= 𝑐 + 2𝜑
𝑎 + 𝜑

2𝜑 + 2𝜑
𝑏 + 𝜑

2𝜑  (32) 

−2𝜑 = 𝑐 + 𝑎 + 𝜑 + 𝑏 + 𝜑 
𝑎 + 𝑏 + 𝑐 = −4𝜑 (33) 

Expressing 𝛼 and 𝛽 from the first two equations we 
get an equation (constraint) for the control values of 
the Hermite form that is actually the HS-patch as: 
𝑥31 − 𝑥32 + 𝑥41 − 𝑥42 + 𝑥14 − 𝑥24 − 𝑥23

+ 𝑥13 = −4𝜑 (34) 
i.e. 
𝑥31 − 𝑥32 + 𝑥41 − 𝑥42 + 𝑥14 − 𝑥24 − 𝑥23 

+𝑥13 =  −4 [𝑥11 − 𝑥21 − 𝑥12 + 𝑥22] (35) 

 
This result should be read as follows: 
The Hermite HS-Patch control points are 
determined parametrically. The control points 
(tangent vectors) of the border curves have to fulfill 
the condition above. Twist vectors of the HS patch 
are controlled by values 𝛼  and   𝛽  that are 
determined from control points that form the patch 
boundary. 
 
2.2 Constrain Conditions in the Bezier 
form - BS-Patch 
 
Unfortunately constrain conditions for the Bezier 
form, i.e. for BS-Patch, are not as simple as in the 
recently derived HS-Patch modification of the 
Hermite form [11], [12]. From the Hermite form we 
know that there are actually two parameters, i.e. 
analogous to 𝛼  and 𝛽  in the HS-Patch, but their 
explicit formulation is just too complex. 

It is easier to transform the Bezier form to the 
Hermite form and make all computations with the 
Hermite form, however the result is the same.  

Mutual conversions between Hermite and Bezier 
patches are not generally presented in textbooks and 
can be derived. We present them below. 
 
 
2.3 Hermite to Bezier conversion 
In the following the Bezier control points will be 
determined by Hermite control points and vice versa. 

𝑿𝐵 = �

𝑥00 𝑥01 𝑥02 𝑥03
𝑥10 𝑥11 𝑥12 𝑥13
𝑥20 𝑥21 𝑥22 𝑥23
𝑥30 𝑥31 𝑥32 𝑥33

�

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑥11 𝑥11 +

1
3
𝑥13 𝑥12 −

1
3
𝑥14 𝑥12

𝑥11 +
1
3
𝑥31 𝑥11 +

1
3

(𝑥13 + 𝑥31) −
1
9
𝑥33 𝑥12 +

1
3

(𝑥32 − 𝑥14) −
1
9
𝑥34 𝑥12 +

1
3
𝑥32

𝑥21 −
1
3
𝑥41 𝑥21 +

1
3

(𝑥23 − 𝑥41) −
1
9
𝑥43 𝑥22 −

1
3

(𝑥24 + 𝑥42) −
1
9
𝑥44 𝑥22 −

1
3
𝑥42

𝑥21 𝑥21 +
1
3
𝑥23 𝑥22 −

1
3
𝑥24 𝑥22 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(36) 
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𝑿𝐻 = �

𝑥11 𝑥12 𝑥13 𝑥14
𝑥21 𝑥22 𝑥23 𝑥24
𝑥31 𝑥32 𝑥33 𝑥34
𝑥41 𝑥42 𝑥43 𝑥44

�

=

⎣
⎢
⎢
⎡

𝑥00 𝑥03 3(𝑥01 − 𝑥00) 3(𝑥03 − 𝑥02)
𝑥30 𝑥33 3(𝑥31 − 𝑥300) 3(𝑥33 − 𝑥32)

3(𝑥10 − 𝑥00) 3(𝑥13 − 𝑥03) 9(𝑥00 − 𝑥01 − 𝑥10 + 𝑥11) 9(𝑥02 − 𝑥03 − 𝑥12 + 𝑥13)
3(𝑥30 − 𝑥20) 3(𝑥33 − 𝑥23) 9(𝑥20 − 𝑥21 − 𝑥30 + 𝑥31) 9(𝑥22 − 𝑥23 − 𝑥32 + 𝑥33)⎦

⎥
⎥
⎤
 

(37) 

 
2.4 Bezier to Hermite conversion 
The transformations above can be used to express 
similar constrain conditions for the Bezier form 
directly from the conditions for the Hermite form. 
However it can be seen that the conditions become 
very complex for a practical use. 
 
 
4 Experimental Results 
The experiments carried out proved that the 
proposed BS-patches and HS-patches have 
reasonable geometric properties.  

To join BS-patches together a similar approach 
can be taken as for the standard Bezier patch in 
connecting patches, but there is just a small 
complication as the Eq (26) has to be respected and 
kept valid. It has just influence to a curvature of a 
surface of the neighbors.  

To prove basic properties of the proposed BS-patch 
we used ½ of a cube. The approach proved that it is 
possible to join S-patches in a vertex and on edges 
smoothly, see Fig. 5. 
 

 
Fig.5 Joined patches 

 

 

Fig.4 Control points of the Hermite patch 
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However, there was a severe problem detected, 
when the vertex of a mesh is shared by three patches. 
In some cases it was difficult to keep C1 continuity, 
Fig.5. 

Fig.6-8 presents the Utah Teapot modeled by the 
HS/BS Patches and rendered as HS-Patches. The 
edges of patches were highlighted to present the 
patches borders, the patches connections are C1 or 
G1 continuous similarly to standard patches 
connections. However it should be noted that the top 
of the cover there is only C0 continuity and presents 
current semi limitation of the HS patch. It can be 
easily overcome by splitting the BS/HS patch 
horizontally into three patches.  

 
Fig.6 The Utah Teapot - HS Patch C1 & G1 

 
Borders of patches are made explicitly visible as 
they have been rendered independently as a 
triangular mesh patch by patch. The surface is 
actually smooth. 

At Fig.7 can be seen also violation of the 
condition for tangent vectors, while at Fig.8 and 
Fig.9 the top of the pot is split to more patches. 

 

 
 

Fig.7 The Utah Teapot -  HS Patch C1 & G1 
 
 

 
Fig.8 The Utah Teapot -  HS Patch C1 & G1 

 
Fig.9 presents normal vectors of two joined patches 
for the HS-Patch which is identical also for the  
BS-Patch as well. 
 
 
  

 
 

Fig.9 Two joined patches rendered, mesh and normal vectors 
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5 Conclusion 
We have described and derived a new modification 
of the Bezier cubic patch. The main advantages of 
the proposed BS-patch are: 
• Both diagonal curves are cubic curves, i.e. 

curves of degree 3. 
• Different tessellations of 𝑢 − 𝑣  domain and 

conversion to triangles do not change the 
degree of border and diagonal curves. 

• Curves (boundary and diagonal) are of degree 3, 
less operations are needed as the computed 
polynomial is of degree 3. 

• The given 𝑢 − 𝑣 domain can be tessellated in 
different ways to four sided mesh and to 
triangular meshes for rendering using different 
tessellations. 

It should be noted that one additional condition, i.e. 
Eq (25) must be kept valid, that a little bit 
complicates implementation, but on the other hand 
the presented advantages of the S-patch seems to be 
obvious. 

Similar conditions were derived also for the B-
Spline and Catmull-Rom patches and 
transformations are in detail described in [8]. 
 
Future work 
In experiments made several problems have been 
detected. However there is a one significant problem 
to be solved.  

Let us imagine a situation when a corner is 
shared not by 4 patches, but by 3 patches only, e.g. 
if corner points form a cube and using 6 HS or BS-
Patches we want to get object similar to a ball. In 
such cases vectors in corners are difficult to 
determine.  

 
Fig.10 Joining 3 patches 

 
Fig.11 Normal vectors 

 

 
Fig.12 Normal vectors - detail 

 
To join 3 patches having a common vertex seems to 
be complicated if the HS-Parch or BS-Patch 
conditions are to be fulfilled. This problem will be 
solved in the following research. 
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